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Precision electroweak predictions rest on
three input parameters

Fine Structure Constant
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Muon decay gives us unique access to the

electroweak scale

The muon only decays
via the weak interaction,
which gives it a very
long lifetime.

All relevant weak interaction

physics is confined to one easily
measured parameter with a clean

theoretical interpretation.

The V-A theory factorizes into
a pure weak contribution, and
non-weak corrections,
essentially uncontaminated by
hadronic uncertainties.
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The Fermi constant is an implicit input to all
precision electroweak studies
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Contains all weak interaction 1
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Plot borrowed from LEP Electroweak Working Group publications



Precision lifetime difference measurements
yield information on nucleon weak structure

For example, the singlet capture rate on the proton
gives direct access to the pseudoscalar nucleon

coupling 1 1

I I
AT ~ 0.146% \ S« Sap

The more accurately we
measure the muon lifetimes,
the more precisely we can
extract derived quantities

log(counts)

» time

See MuCap talk by Brendan Kiburg immediately following



A brief history of muons lifetime
measurements

Recent Muon Lifetime Measurements

2.1976
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Before 2007, the best
measurements were over 20
years old, and until 1999 G_
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Theory limitations were lifted in 1999
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Theory limitations were lifted in 1999

0GF 1 67, \ 2 dtheory 2
Gr 2\/(7,7) i i < theory >
1999: 9 ppm 18 ppm < 0.3 ppm

van Ritbergen and Stuart:
2-loop QED corrections
(massless electrons)

T. van Ritbergen and R. G. Stuart, Nucl. Phys. B564, 343 (2000)
A. Pak and A. Czarnecki, Phys. Rev. Lett. 100, 241807 (2008)



Theory limitations were lifted in 1999

0GF 1 67, \ 2 dtheory 2
Gr 2\/(7,7) i i < theory >
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_ van Ritbergen and Stuart:
extraction

2-loop QED corrections
(massless electrons)

T. van Ritbergen and R. G. Stuart, Nucl. Phys. B564, 343 (2000)
A. Pak and A. Czarnecki, Phys. Rev. Lett. 100, 241807 (2008)



Theory limitations were lifted in 1999

0GF 1 67, \ 2 dtheory 2
Gr 2\/(7,7) i i ( theory )
Today: 0.5ppm 1 ppm < 0.3 ppm

Lifetime error limits J
the Fermi constant

extraction
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One-at-a-time

Can't really do one-at-a-time, the next best
thing is a low rate, DC beam.

Muon timeline

— I —

Electron timeline
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A
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Wrong assignments

counts

time 30kHz — 385d for 10°u™
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Many-at-once

Need time structured (AC) beam, not a

continuous (DC) beam
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+H

—iH -

-

Electron timeline

<
<
-
-

A [ [ A X —
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E Right assignments
> Much higher rates, but much
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> construction
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We run in the “many-at-once” mode

Electrostatic

_ Thin
beam kicker Ty stopping
Polarized surface I target
muon beam W
(ME3 atPSl) o | |
12,5 kV 500 Mhz
waveform
E Accumulation Period dlgltlzathn =
e (2006/2007) Symmetric, highly
Measurement Period /\SGQmented detector
: gl
’w:EBaﬂtground MHTDC
shor 4 oo - (2004) inner/Outer
tile pair
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Time-dependent systematics are the core
concern for a 10** data set

_—

Early-to-late changes, for

instance: 0
Instrumental issues Time in fill_y-

PMT gains
Discriminator threshold

Walk | threshold
Kicker voltage sag J/
Pileup =

E,

Physics issues
Polarization precession
Longitudinal relaxation

>

/’[s)

AVAY e

counts,

fime

V Tishchenko, et al. Phys Rev D 052003 (2013)
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The pileup spectrum can be
constructed directly from the data

A MuLan
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The pileup spectrum can be
constructed directly from the data

faLan { " Hidden pulses measurably
tle pair 7 distort the lifetime

Shadowed and pileup
pulses have the same
probability distribution ...

reconstruct pileup from
\ shadows

|
' R\ Raw Time
: 4~ Distribution

.
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N e—t /T
Pulse Shadow » Pileup Time
Resolving window o7 o Distribution
Time e /T
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For a 1ppm measurement, we have to go well

beyond the single event pileup spectrum

lifetimeLast ADT=5.00, CW=5.00 lifetimeLast2_px

Entries 1.101592e+12

1049
1101

1 010 = —___ Uncorrected lifetime, t=2.20 lean
MS
9 " Normal Pileup (PU), t=1.10
1 0 —  ExtendedPU, 7=1.10

——— False Coincidences (Accidentals), t=1.11

Jitter (single before coin), t=1.10

1 0? ————  Triple PU from normal PU, mean=0.72
Triple PU from extended PU, mean=0.68

6
1 0 - Triple Extended from normal PU, mean=0.68

——— Accidentals in shadow window (0.5 corr), mean=0.67
—— Jitter in shadow window, mean=0.64

———————  Triple extended PU from extended PU, mean=0.65
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T

How well does the shadow method

correct pileup?

2.2010
2.2005
2.2000
2.1995
2.1990
2.1985
2.1980
2.1975
2.1970

2.1965 ——

Uncorrected Fits
10.6 ppm/ns

Corrected Fits
0.008 ppm/ns

TTTT IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|

)

ADT (ns)

In our final result,
we extrapolate to
zero resolution time,
and apply a
systematic to cover
the very small
residual effect



Analysis of our 2004 Physics run yielded a
11 ppm lifetime measurement

Lifetime Histogram

The 7-parameter fit function
includes:

The muon lifetime,

A flat background, and

An independently validated
electronics oscillation (with low
correlation to the lifetime)

10°

10’
The analyzers are blind

2/dof — 453/484 to the clock frequency

I I ‘
El]l]l] l] El]l]l] 4l]l]l] El]l]l] El]l]l]1000012000140001600013000
time [ticks]

MulLan Collaboration, Phys. Rev. Lett. 99, 032001 (2007)
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We engaged in extensive analysis of our
2006 and 2007 data sets ...

| Serial:Fill:Event = 184:10478:0 |
300

Nearly 10'* events on
tape for each period... 250F

Total number of collected good 1, Gigau 200

1000 [ target magnet:

800 E- :::: :g;t :2!()(:)63

: s S

150

100

1 |
0 5

600 E- 50

1 0
400:-

I 50 ""1|uj“1115“"2|u“Hzls""alu“jl:zjsmlajulmalsn
EDI}:-

: | ... while new electronics and

. 1.1

: S S . I e e [] []
o 10200 s 40 S0 a0 A@NAlysis techniques greatly
reduced systematics over 2004.



Lifetime fits

lifetimeLast ADT=8.00, CW=8.00 lifetimeLast4_px
Entries 1.101349e+12
10 Mean 1049
107 & RMS 1101
— v2 | ndf 1175/1158
B N 8.944e+09 + 17662
i R 65.75+ 1.30
B 1.015e+07 + 186
10° =
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8|
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Lifet
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—  Residuals show no structure
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lifetimeLast ADT=5.00, CW=5.00 residuals

8 Entries 1.101325e+12
‘g L Mean 4692
o L RMS 2809
o 6 2 | ndf 1227/ 1188
L; N p0 -0.003408 + 0.029001
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1 ||
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We studied a significant number of data subsets
for lifetime consistency across various conditions

The lifetimes measured by

= af iIndividual detector pairs
& 3 appear statistically consistent
S ob
%
-6F E
-8;—
8t
6
4
2p
04
_2;-”
4 F
-6F
8E ‘
051152253354455
fit start time (US)
Fit start time scans show no

evidence of missing long time
scale components




We believe our systematics are well
understood for both run periods

Uncertainty RO6 RO7
(ppm)  (ppm)
Kicker stability 0.20 0.07
SR distortions 0.10 0.20
Pulse pileup 0.20
(Gain variations 0.25
Upstream stops 0.10
Timing pick-off stability 0.12
Master clock calibration 0.03
Combined systematic uncertainty  0.42 0.42

Statistical uncertainty 1.14 1.68




The lifetime results for our three run periods
are entirely consistent

7,0% = 2196979.9 & 2.5(stat) & 0.9(syst) ps

7,07 =2196981.2 + 3.7(stat) £ 0.9(syst) ps

After properly accounting for
the correlated systematics, the
final combined MulLan result is

7, N = 2196 980.3 + 2.1(stat) £ 0.7(syst) ps



The lifetime results for our three run periods
are entirely consistent

7,0% = 2196979.9 & 2.5(stat) & 0.9(syst) ps

7,07 =2196981.2 + 3.7(stat) £ 0.9(syst) ps

After properly accounting for
the correlated systematics, the
final combined MulLan result is

TyuLan — 2196 980.3@:&1}) + 0.7(syst) ps
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Our combined result dominates the
world average

'Mejasured Reference Publication TPDG — 2 196 981 1 -+ 22 pS
lifetime (us) year K
2.196 9803 &+ 0.000 0022 RO64+R0O7
2.196 9799 = 0.000 0027 RO6 . . .
5196 9812 L 0.000 0038 ROT There is some tension with the
2.197 083 4 0.000 035 Barczyk 2008 Barczyk result (FAST) that
2.197 013 £+ 0.000 024 Chitwood 2007 . . .
5197 078 £0.000 03  Bardin 031 drives the increased error bar in
2.196 95 4+ 0.000 06 Giovanetti 1984 the PDG average
2.197 11 +0.000 08  Balandin 1974 ]
2.197 3 +0.000 3 Duclos 1973
® Balandin - 1974
® Giovanetti - 1984
® Bardin - 1984
— Chitwood - 2007
° Barczyk - 2008
° MulLan - R06
- MulLan - R0O7

2.19690 2.19695 2.19700 2.19705 2.19710 2.19715 2.19720
T, (us)



Our motivation, of course, Is extracting the
Fermi Constant

Assuming a pure V-A structure of the weak
Interactions, we can extract Fermi's constant by
Inverting:

1+ AgD + AgH) 4+ Ag?)

o 3
Ty 1927 J J
Phase space
First order corrections

Second order corrections

1 _G%mi( )

Guuban — 1 166 378 7(6) x 107° GeV 2

k‘0.5 ppm



MulLan was systematics limited ... could
we do better at a future facility?

Uncertainty RO6 RO7
(ppm)  (ppm)
Kicker stability 0.20 0.07
1SR distortions 0.10 0.20
Pulse pileup 0.20
(Gain variations 0.25
Upstream stops 0.10
Timing pick-off stability 0.12
Master clock calibration 0.03
Combined systematic uncertainty  0.42 0.42

Statistical uncertainty 1.14 1.68




MulLan was systematics limited ... could
we do better at a future facility?

Uncertainty RO6 RO7
(ppm)  (ppm)
Kicker stability 0.20 0.07
1SR distortions 0.10 0.20
Pulse pileup 0.20
(Gain variations 0.25
Upstream stops 0.10
Timing pick-off stability 0.12
Master clock calibration 0.03
Combined systematic uncertainty  0.42 0.42
Statistical uncertainty 1.14 1.68

My Verdict: Probably ...



Precision electroweak
parameters: an update
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Residual polarization of the stopped muons
plays havoc with lifetime fits

Weak decay
violates chirality

+
dl — i (1 4 %A CoS 9)

d(cosf) T, \

1 — -
ND(t) — N()e_t/T (1 + _A |:SJ_(t) . éDe_t/TJ_ + S“(O) . éDe—t/T:|>

N

Matter interactions decrease
- polarization fraction over

H=—-u-B time

Spins precess in
magnetic fields



We start with nearly 100% polarized beam ...
how do we control polarization issues?

Point symmetry of the
detector largely cancels
polarization asymmetries in
sum over symmetric tiles,

up to acceptance (97 ¢)
differences.

(7T—077T+¢)

Detector A' ' Ui

Detector A




We also modulate the remnant polarization by
choice of target environment and muonium
formation fraction

A polarization destroying
ferromagnetic target, AK3,
with high internal field
(2004,2006)

Polarization preserving target,
crystalline quartz, with an
applied external field (2007)

We also performed special runs with
polarization maximizing targets like
copper and aluminum, and target offsets
to maximize asymmetries (2006, 2007)



